February 12, 2026 05:16 pm (IST)
Follow us:
facebook-white sharing button
twitter-white sharing button
instagram-white sharing button
youtube-white sharing button
Bangladesh poll manifestos mirror India’s welfare schemes as BNP, Jamaat bet big on women, freebies | Drama ends: Pakistan makes U-turn on India boycott, to play T20 World Cup clash as per schedule | ‘Won’t allow any impediment in SIR’: Supreme Court pulls up Mamata govt over delay in sharing officers’ details | India-US trade deal: ‘Negotiations always two-way’, says Amul MD amid farmers’ concerns | Khamenei breaks 37-year-old ritual for first time amid escalating Iran-US tensions | India must push for energy independence amid global uncertainty: Vedanta chairman Anil Agarwal | Kanpur horror: Lamborghini driven by businessman’s son rams vehicles, injures six | ‘Namaste Trump beat Howdy Modi’: Congress slams PM Over India-US trade deal | Historic India-US trade pact: Tariffs cut, $500B market opportunity unlocked! | Big call from RBI: Repo rate stays at 5.25%, neutral stance continues
UNI

India: DST-SERB supports study for identification of structure-based potential antivirals against COVID 19

| @indiablooms | May 27, 2020, at 06:13 pm

New Delhi/IBNS: The Science and Engineering Research Board (SERB) under Department of Science & Technology (DST) has recently supported a proposed study by Prof. Pravindra Kumar from IIT- Roorkee for identification of structure-based potential antivirals against SARS-CoV2.  Antovirals

The study to be funded under Intensification of Research in High Priority areas (IRHPA) will search for small molecule inhibitors targeting some of the most important viral replication enzymes.

These enzymes are viral proteases (papain-like protease & 3CLprotease), RNA dependent RNA polymerase (nsp12), and the Methyltransferase or MTase (nsp14).Viral proteases, which are enzymes encoded by the genetic material (DNA or RNA) of viral pathogens, catalyze the cleavage of specific peptide bonds in cellular proteins, read a government statement.

In this study, a computer-based high throughput virtual screening approach will be used to identify antiviral molecules from different compound libraries that will be experimentally validated for antiviral potential. The collaborators Dr. ShaillyTomar from IIT Roorkee and Dr. Gaurav Sharma from Indian Veterinary Research Institute (IVRI), Bareilly, will help in experimental testing and evaluation of the antiviral efficacy of the identified antiviral molecules against SARS-CoV-2 virus.

As a preliminary work, the investigators have already performed the in silico work by high-throughput virtual screening approach to examine the binding affinity of FDA approved drugs targeting the viral protease Mpro.

"The hunt for new drugs, including repurposed drug candidates, is getting a boost by in silico approaches, which allude to identifying the potential antiviral molecules based on computer simulation of their molecular structures. This approach is expected to be much faster and accurate in selection of potential drugs and vaccines for experimental and clinical testing," said Prof Ashutosh Sharma, Secretary, DST.

SARS- CoV-2 is the etiological agent responsible for the global COVID-19 pandemic with high morbidity and mortality. Across the globe, the R&D activities by various agencies were initiated towards the identification of clinically effective vaccine or specific antiviral drugs or drug repurposing strategies to combat the COVID-19 infections either in the form of prevention or treatment.

Using structure-based approach for drug repurposing, this study would pave the way to identify the molecules that bind to Mpro active site, and their potential can be used as antiviral molecules against COVID-19.

Support Our Journalism

We cannot do without you.. your contribution supports unbiased journalism

IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.

Support objective journalism for a small contribution.