December 06, 2025 12:26 am (IST)
Follow us:
facebook-white sharing button
twitter-white sharing button
instagram-white sharing button
youtube-white sharing button
In front of Putin, PM Modi makes bold statement on Russia-Ukraine war: ‘India is not neutral, we side with peace!’ | Rupee weakens following RBI repo rate cut | RBI slashes repo rate by 25 basis points — big relief coming for borrowers! | 'Mamata fooled Muslims': Humayun Kabir explodes after TMC suspends him over 'Babri Masjid-style mosque' demand; announces new party | Mosque in the middle of Kolkata airport? Centre confirms flight risks, BJP fires at Mamata | Sam Altman is betting big on India! OpenAI in advanced talks with Tata to build AI infrastructure | Government removes mandatory pre-installation of Sanchar Saathi App. Know all details | Calcutta HC overturns controversial Bengal job annulment — 32,000 teachers rejoice! | Bengal SIR shock: 1 lakh ‘deceased voters’ found in Kolkata North! | Massive twist in Bengal voter list: ‘Perfect’ 2,280 booths shrink to just 480 after probe!

Discovery of early, 'croc-like' reptile sheds new light on evolution of dinosaurs

| | Apr 13, 2017, at 04:21 am
Birmingham, Apr 12 (IBNS): A new species of ancient reptile has been described by scientists at the University of Birmingham, filling a critical gap in the fossil record of dinosaur cousins and suggesting that some features thought to characterise dinosaurs evolved much earlier than previously thought.

Described in a paper published today in Nature, the carnivorous reptile, Teleocrater rhadinus, was approximately 7- 10 feet in length, had a long neck and tail, and walked on four crocodile-like legs.

It roamed the Earth during the Triassic Period more than 245 million years ago – pre-dating the first true dinosaurs by around ten million years – and appears in the fossil record just after a large group of reptiles, known as archosaurs, split into a bird branch (leading to dinosaurs and eventually birds) and a crocodile branch (eventually leading to today’s alligators and crocodiles). Teleocrater and its kin are the earliest known members of the bird branch of the archosaurs.

The discovery overturns widely-held preconceptions by palaeontologists about the morphology of early dinosaur relatives, with many scientists anticipating that such creatures would be smaller, bipedal and more ‘dinosaur-like’.

"Teleocrater fundamentally challenges our models of what the close relatives of dinosaurs would have looked like," said Professor Richard Butler from the University of Birmingham.

"Dinosaurs were amazingly successful animals. It’s natural to want to know where they came from, and how they became so dominant. Teleocrater is hugely exciting because it blows holes in many of our classic ideas of dinosaur origins," Butler said.

All the specimens used to describe Teleocrater were collected from a rock unit called the Manda Beds, in the Ruhuhu Basin of southern Tanzania, Africa.

Teleocrater fossils were first discovered in the region in 1933 by palaeontologist F. Rex Parrington, and subsequently studied by Alan J. Charig, former Curator of Fossil Reptiles, Amphibians and Birds at the Natural History Museum, in the 1950s.

However, due to a lack of crucial bones, such as the ankle bones, Charig could not determine whether Teleocrater was more closely related to crocodylians or to dinosaurs. Unfortunately, he died before he was able to complete his studies.

Re-examination of Charig’s specimens by Butler and colleagues, combined with the discovery of additional fossils by a US-led team in Tanzania in 2015, has finally allowed the surprising relationship between Teleocrater and its dinosaur cousins to be revealed.

"It’s astonishing to think that it’s taken more than 80 years for the true scientific importance of these fossils to be understood and published," said Professor Butler.

Professor Paul Barrett from the Natural History Museum, one of the other main authors of the work on Teleocrater, said: "My colleague Alan Charig would have been thrilled to see one of ‘his’ animals finally being named and occupying such an interesting position in the Tree of Life."

"Our discovery shows the value of maintaining and re-assessing historical collections: many new discoveries, like this one, can be made by looking through museum collections with fresh eyes," he added.

Support Our Journalism

We cannot do without you.. your contribution supports unbiased journalism

IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.

Support objective journalism for a small contribution.