March 29, 2024 01:42 (IST)
Follow us:
facebook-white sharing button
twitter-white sharing button
instagram-white sharing button
youtube-white sharing button
PM Modi has mastered art of manipulating democracy, hurting Constitution: Mallikarjun Kharge | Mafia-turned-politician Mukhtar Ansari dies of cardiac arrest at 63 | NIA arrests key conspirator in Bengaluru cafe blast case | Actor Govinda returns to politics after 14 years of 'vanvas', joins Eknath Shinde camp | 'To browbeat and bully others is vintage Congress culture': PM posts after 600 lawyers write to CJI
Researchers identify novel molecular mechanism involved in Alzheimer's
Internet wallpapaer image

Researchers identify novel molecular mechanism involved in Alzheimer's

India Blooms News Service | @indiablooms | 12 Feb 2019, 02:13 pm

New York, Feb 12 (IBNS): Researchers at Wake Forest Baptist Health have identified a novel mechanism and potential new therapeutic target for Alzheimer’s disease (AD).

The findings are published in the current issue of the Journal of Clinical Investigation.

"Alzheimer’s is such a devastating disease and currently there is no cure or effective therapy," said Tao Ma, Ph.D., assistant professor of gerontology and geriatric medicine at Wake Forest School of Medicine, part of Wake Forest Baptist Health.

"All completed clinical trials of new drugs have failed so there is clearly a need for novel therapeutic targets for potential treatments."

Alzheimer’s is characterized by profound memory loss and synaptic failure. Although the exact cause of Alzheimer’s remains unclear, it is well established that maintaining memory and synaptic plasticity requires protein synthesis.

Ma’s team and others recently have shown AD-associated activation of a signaling molecule termed eEF2K leads to inhibition of protein synthesis. In this study they wanted to determine if suppression of eEF2K could improve protein synthesis capacity and consequently alleviate the cognitive and synaptic impairments associated with the disease.

The researchers used a genetic approach to repress the activity of eEF2K in two different Alzheimer’s mouse models. They found that genetic suppression of eEF2K prevented memory loss in those animal models and significantly improved synaptic function.

"These findings are encouraging and provide a new pathway for further research," Ma said.

His team hopes next to test this approach in additional animal studies and eventually in human trials using small molecule inhibitors targeting eEF2K.

 

Internet wallpapaer image

 

 

Support Our Journalism

We cannot do without you.. your contribution supports unbiased journalism

IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.

Support objective journalism for a small contribution.